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Vorticity and Viscous Dissipation in an Incompressible Flow

Yang-Moon Koh*
(Received April 27, 1993)

The relation between the vorticity and viscous dissipation in an incompressible flow has been
investigated. It is shown that the square of relative vorticity with respect to the coordinate system
fixed to the container or to the flow at infinity gives the global rate of viscous dissipation, that
is, the viscous dissipation is proportional to the volume integral of the square of relative
vorticity. Thus, the total rate of viscous dissipation in the flow produced by the motion of a rigid
body is proportional to the integral of the square of vorticity taken over the whole space
including the region occupied by the volume of the rigid body in which the vorticity is assumed
to be the twice of the angular velocity of the body.
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1. Introduction

It is one of basic assumptions of fluid me-

chanics that the viscous stress is independent of

the vorticity, but depends only on the rate of
deformation tensor. It is also true that the viscous
dissipation of mechanical energy, which is the
work done in deforming the element of fluid
made by the deviatric part of the stress in associa-
tion with the shearing part of the rate of strain
(Batchelor, 1967, p. 153), and the square of vor-
ticity, which is associated with the rotation of the
fluid element, are mathematically independent
(McCormack and Crane, 1973, §4.2). But the net
viscous force on unit volume of an incompressible
fluid is proportional to a spatial derivative of the
vorticity (Batchelor, 1967, p. 148). Turbulent flow
is also due to vorticity intensification through
vortex stretching and the dissipation of turbulent
kinetic energy is approximately equal to the
mean-square vorticity fluctuation (Tennekes and
Lumley, 1972, §3.3). In addition, the form of the
viscous dissipation function of an incompressible
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(here, ;£ and y, are the viscosity and j-component
of velocity p, respectively) is quite similar to that
of the square of vorticity,

1 (ov; 80)(80- 51}-)
2 2 oy (OoYi  OU;
pot=gu( G5 ) (Ge-gr) @
All these suggest that there might be some close
relations between the vorticity and viscous dissi-

pation.

It seems not only the present author who has
thought that the viscous dissipation and vorticity
might be related to each other closely. Lamb
(1945, p. 581), as an example, has shown that, for
an incompressible flow,
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where the volume integral is taken over the region
V occupied by the fluid and the normal pn is
drawn inwards from the boundary S - If p=0 at
the boundary, as in the case of a liquid filling a
fixed closed vessel, this becomes

[0av=y[oav. 4

Thus, we can suppose energy to be dissipated at
the rate ;i per unit volume (Milne-Thomson,
1968, p. 639). However, generalization of the
argument to cases of non-vanishing velocity at the
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boundary seems to have been frustrated by two
obvious counterexamples, a rigid-body rotation
of a fluid in a vessel and a free-vortex flow
around a rotating circular cylinder. Besides, deri-
vation of Egs. (3) and (4) does not look to be
based on physical arguments, but seems purely
mathematical.

The purpose of the present study is, thus, to
investigate the relation between these two flow
properties. We will show that Eq. (4) holds true
for any incompressible flow provided that (i) the
relative vorticity with respect to the frame of
reference fixed to the vessel or to the flow at
infinity is used rather than the absolute vorticity
and (ii) the region of integration is extended so
that it includes the inside of the rigid body where
the vorticity is assumed to be equal to the twice of
body’s angular velocity. Another purpose of the
paper is to give the firm physical explanation
about why the relation (4) should hold true, that
is, why two different physical quantities, ¢ and
paw?, are so closely related. Briefly speaking, the
vorticity induces the flow and the viscous dis-
sipation in this induced flow is proportional to
the square of vorticity.

2. Changes in the Kinetic Energy of an
Incompressible Fluid in Motion
By dot-producting the momentum equation,
v - vt _
p—aT—vXa)— Vi p+ 5 uV X e,
with veloctiy p and making use of the vector
identity,
V(v Xw)=(Vxv)o—v(VXo)

we have the kinetic energy equation,

0 ov?: ov?
Do (et

ot 2
+uVe(vX w)— po’
or
d 00" v (o0) +uV-(0 X @) —pats (5)
—(FZ—_.‘OU)‘U v X @)— pw

where p, o, and 4 represent the pressure, density,
and viscosity of the fluid, respectively, and

w=VXuvp.

Suppose, now, that a rigid body in an un-

Fig. 1 The control surface used to integrate the
kinetic energy equation

bounded incompressible viscous fluid which is at
rest at infinity is in motion with linear velocity [/
(#) and angular velocity Q(¢)(Fig. 1). The rate
of change of total kinetic energy of the fluid
surrounding the body is then obtained by inte-
grating Eq. (5) over the control volume V
between surfaces S; and S, where the surface S is
taken to be coincident with the body surface
instantly, and then letting S, recede, viz.
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Here, the unit normal pn; is into the control
volume (outward from the body).

On S, the fluid velocity is equal to that of the
body surface, viz.

v=U+2Xr, @)
and, thus,
L pv-nldsle-L prudS:
+Q-£ rX prudSs,

where # is a position vector to a point on S; from
the axis of rotation. Also we have
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But, noting that Eq. (7) also gives velocities of
material points of the rigid body and thus apply-
ing the divergence theorem to the volume of the
body, we have

ﬁ (v X Q) ndS,
:ﬁ V(o X 2)dVo=22Vs,

where 1/ is the volume of the rigid body. Thus we
have

L[y =—(U-F+Q-T)
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and ¢ is a unit vector tangential to the surface of
the body.

As @-—20 is the vorticity relative to the
moving frame of reference fixed to the body, u(w
—282) > n=r,t is equal to the shear stress at the
surface. F, and T are, thus, the resultant force
and moment of shear stress acting on the surface
of the body, respectively, and — (/- F + Q- T)is
the work done by the body to the surrounding
incompressible fulid. Thus, the last term of Eq.
(8) should be equal to the dissipation of kinetic
energy, viz.
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Eq. (9) can also be got as follows. For an
incompressible flow, we have from Egs. (1) and

(2)
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Thus, integrating Eq. (10) over the region V, we
have Eq. (3) and
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and Eq. (9) follows immediately. Similarly, for
the fluid in a rigid vessel, we have

A ¢(1V:/t(£u WAV — 4 Vo>, (1)

where 1, and  are, now, the volume and angu-
lar velocity of the vessel, respectively.

In particular, if =0, both Egs. (9) and (11)
are reduced to Eq. (4), that is, the volume integral
of the square of vorticity 4 / @*dV gets just equal
to the total rate of viscous dissipation in the
whole flow field. Note also that Eq. (9) is reduced
to Eq. (4), if volume integrals are taken over the
whole space assuming that the rigid body is
replaced by the mass of fluid moving in the same
way, viz. assuming that the vorticity is equal to
the twice of body’s angular velocity in the region
occupied by the solid body. Eq. (11) becomes Eq.
(4), too, if the relative vorticity =@ —2.0
with respect to the coordinate system fixed to the
vessel is used instead of the absolute vorticity .
To sum up, the rate of dissipation of kinetic
energy of the fluid filling a container which may
be infinitely large and have one or several rigid
bodies moving in it is given (Eq. (6) holds exact-
ly, when the outer control surface S, is the wall of
the fixed container and thus =0 there) by

feav=y[ wav
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where V is the volume of the ;-th body, and 1’
and ¥ denote, respectively, the inside of the
container (the whole region occupied by rigid
bodies and fluides) and the region occupied by
fluids only. @ and &, here, are also the relative
vorticity and relative angular velocity with respect
to the moving frame of reference fixed to the
container.

3. Viscous Dissipation in a Flow Field
Induced by Vortices

The previous result that the integral of the
square of vorticity is proportional to the rate of
viscous dissipation seems, at first sight, to be
against the obvious fact that the viscous stress is
generated solely by deformation of the fluid and
independent of the loacl vorticity. This apparent
paradox can be explained by realizing that the
vorticity induces the flow and, hence, deforma-
tion.

As an example, suppose a Rankine-vortex flow
such that

sz for »<q

vl r)= 2 s
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where y,, 7, @ and g are values of a circumferen-
tial velocity, radial distance, and vorticity and
radius of the core of the vortex, respectively. The
dissipation function becomes

0 for »r<a
D= a4w2
)7

for » >a

and integration gives
[0dA=rpa* o=y [ dA, (12)

where integrals are taken over whole plane. We
can also show(Appendix 2) that the total dissipa-
tion in a combined flow induced by two Rankine
vortices of radii g;, g, and vorticities @,, w, 1S
equal to zu(Awi+ adw}): the dissipation in the
combined flow due to several vortices is simply
the sum of dissipations in each flow fieid due to
every single vortex.

O

Fig. 2 Calculation of the velocity distribution as-
sociated with a ring vortex

Though a bit complicated, it is straightforward
the above argument to three-
dimensional flows. Suppose a vortex-tube of
strength " and infinitesimal cross-section A(Fig.
2). It is assumed that the flow is irrotational at
infinity and, thus, the tube forms a closed loop C
which may pass through the solid body. Let y be
a position vector to a point ¢ of the vortex-tube
and w(y) be the vorticity which is assumed
uniform across the cross-section of the vortex-
tube. Then, we have

o(3)dV(y)=w(y)Ady=TIdy (13)

and the velocity p(x) at a point P(x) due to this
vortex-tube is (Batchelor, 1967, p. 87)

to extend

1
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where the volume intergral is taken over the
vortex-tube and s is the magnitude of the vector s
=x—y. The strain ¢; becomes
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and the dissipation function is reduced to
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where y’ is another position vector to a point of
the vortex-tube and s'=|x— 3’|
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The total rate of viscous dissipation

W= f 04V (x)

can now be obtained by integrating Eq. (15) over
the whole space. Assuming that the order of
integration can be interchanged and using the
relation (Appendix 3)

/’x, 21)(x1 i) dV(x)
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The last integral of Eq. (17) is zero and we have
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The last integral of Eq. (18) is zero again and

O wmyi 2 .,
Hiv v s omly =y,

where §(y—y’) is a Dirac g§-function. Thus,
using Eq. (13), we have

W=yl ﬁ ﬁ Sy — ) dymdvin
=ﬂ[‘/wm(y)wm(y’)8(y—y’)dV(y)dV(y’)

_ ]'w(y)-w(y)dwy), (19)

where volume integrals are taken over the vortex-
tube. In other words, the viscous dissipation in
the flow induced by an infnitesimal vortex is
proportional to the volume integral of the square
of vorticity taken over the vortex.

The combined velocity due to two vortices C/
and C! is the sum of velocities induced by each
vortex and so is the strain ¢, of the combined
flow, that is,

€= €hel,

where ¢’ and ¢ are strains due to C! and C¥,
respectively. Thus we have

€i€5=€hel+2elell + el €ll.

But the same reasoning to get Eq. (19) leads to
that the integral of the cross-product term is zero,
ie.,

/eueu dV(x)=0,

and we have the same relation (19) for the com-
bined flow, too, with the volume integral taken
over all the vortices. But it is irrotational outside
the vortices and we have Eq. (4) again, viz.

W= [0aV(0)=p [wavix,

where volume integrals are now taken over the
whole space.

4. Discussions and Concluding
Remarks

It seems not necessary to discuss viscous dissi-
pations in a rigid-body rotation of the fluid in a
vessel and a free-vortex flow around a rotating
circular cylinder any more. But one may raise
question about viscous dissipations in potential
flows. Clearly, irrotationality does not imply the
absence of viscous stresses (Kundu, 1990, p. 124)
nor the absence of viscous dissipations. But, the
only potential flow known to the present author
that satisfies the no-slip condition at the solid
wall is the free-vortex flow around a rotating
circular cylinder which has already been discus-
sed in depth. To satisfy the no-slip condition,
most potential flows are accompanied by shear
flows with non-vanishing vorticity such as in
boundary layers and wakes. The velocity v of an
incompressible fluid which is consistent with
specified values of vorticity @ at each point of the
fluid can be written (Batchelor, 1967, Sec. 2.4) as

v=v,+V¢, (20)
where p, is given by Eq. (14) with the volume
integral taken over the region occupied by the
fluid. The velocity potential ¢ is to satisfy the
boundary condition. It should also be assumed
that the fluid, the vorticity distribution and,
hence, the region of integration extend beyond the
actual boundary to the inside of the body so that
all the vortex lines form closed loops in the
extended region, when the specified vorticity has
non-zero normal component at some points of the
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actual boundary of the fluid. But, imagining that
the body is replaced by the mass of fluid moving
like the rigid body(the no-slip condition assures
that the velocity varies continuosly across the
actual boundary of the fluid), we can see that Eq.
(14), the volume integral being taken over the
extended region which includes the volume of the
body, gives the velocity p and, hence, V¢ in Eq.
(20) can be taken to be zero. In other words, the
vorticity distribution in the shear layer and inside
of the volume of the body determines the whole
velocity field including that of the external poten-
tial flow, and the integral of the square of vor-
ticity over the extended region gives the total rate
of viscous dissipation in the whole flow field
including that in the region of irrotational flow.

Neither the vorticity at a point nor the square
of it is associated with the local rate of viscous
dissipation at that point. As claimed frequently,
the viscous dissipation, which is associated with
the deformation of the element of fluid, and the
square of vorticty, which is associated with the
rigid-body rotation of the fluid element, are not
only two different physical quantities but also are
mathematically independent. But the relative vor-
ticity, i.e., the relative rotation of an incompress-
ible fluid with respect to the coordinate system
fixed to the container or to the flow at infinity
always induces deformation. In other words, if
there is a relatvie motion of an incompressible
fluid with respect to the container or to the flow
at infinity, then there always exists the relative

vorticity, wr, and the integral ;z/a)rezde

taken over the extended region including the
volume of the rigid body is equal to the total
viscous dissipation. Briefly speaking, pwy.” gives
the global rate of viscous dissipation, while the
dissipation funtion @ gives the local rate, and
their volume integrals over the extended region
should be the same.
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Appendix A
Evaluation of the Integral

‘4 (v-Vv) mdS

Let
v=U+t U+RXr

where r is a position vector from the origin of the
moving coordinate system fixed to the body and
U and Q are the linear and angular velocity of
the moving frame of reference, respectively. Then,
employing the no-slip condition
V=0 on S
and the vector identity
aV(2xr)=2Xa,
where ¢ is an arbitrary vector, we have
v-Vo=(U+ 82X r)'erez
+Qx(U+8Xr)
on the surface S;.

But p,.; * n, the normal component of relative
velocity with respect to the surface S, is a qua-
dratic function of the distance from S; and, thus,

[( U+.Q X r)'vvrel]' n1:0

on S,. Also we have
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ﬁ (2 X U)* mdS,
=(2x U)-£ ndSi=0

and

[ 1@x@xrl-nas;

~ [ v-l@x@xnlavy

=—-20V,
where V, is the volume of the body. Thus, we
have

/s (V) ndSi=—-22*V,

Appendix B
Viscous Dissipation in a Flow Field
Induced by Two Rankine Vortices

The velocity p at a point P(x,y) (Fig. 3)
induced by two line vortices of strengths [3, I3 at
points (+/, 0) is

p= L —yit+(x— 1)J+ —yi+(x+10)J

27 =Dy T 2x (x+ Dy
where § and j are unit vectors in the x- and
y-direction, respectively. The dissipation function

becomes
o_ ['1 1 i l’2 1
g 2 [a=0+y T 7 [+ 1P+
ZHH Ax—Dx+ Dy +[(x DF— vy lx+1)°— 2]
T [(x— 1P+ v P+ P+ ]

The first two terms on the right-hand side are
dissipation functions for each line-vortex flow
and the last one, denoted by @, is due to the

Y P(x,y)

P 3, ro
7
(1,0)

Fig. 3 Calculation of the velocity field induced by
two line vortices

(-1oy © X

interaction of two vortex-flows.
To integrate @,;, we can use the bipolar coor-
dinate system(Fig. 3):
E=6i— by p=In"%,
2
- /sin{
coshp—cosé’

____[sinhy
coshp—cosé’

The scale factors are

/

h = S —————————— e -
= coshy—cosé

and @ becomes

O =55%(coshy —cos&)cos2é.

2[4

Thus, we have

[[@udray= 2 cE f [[cos2¢dzan=o,

where the integrals are taken over the whole plane
excluding the cores of vortices, that is, the region
outside of two circles of constant »,/», centred at
(% {, 0). Thus, the total dissipation in a combined
flow due to two Rankine vortices is simply the
sum of dissipations in each Rankine-vortex flow.

Appendix C
Derivation of Eq. (16)

By putting
a=I3 pey TV
we have

s=x—y=t—a, s=x—y=t+a
and the left-hand side of Eq. (16), d=noted by [,

becomes
I f(tz al)(tj+aJ)dV(t)

Let e, be a unit vector in the ;-direction of the
coordinate system and e;s be another set of base
vectors such that ¢} is in the direction of g. Then,
putting

t = r(cos fe; +sinfe;) + zes,
where @ is the azimuthal angle about the ej-axis
measured from the ej-axis and » is the distance

from the ¢j-axis, and integrating with respect to §
first, we have
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o U= @il r (8~ bily)
Iy= ”,L,/; [+ (z— @A r*+(2+ a)* ]2 rdrdz

where /;,;=¢)+e;. By substituting the variable of

integration » by »* and using the tabulated
formulae(Dwight, 1961, p. 214)

oo dx _ 1
j; (ax*+2bx+ ) bjc+cda

and

* xdx _ 1
o (ax*+2bx+c)?  afc+bJa’

we have

8y — bils; Oy— bails;
Ly=n—* S =2 T
’ a ly—'l
But
o= yi—yi
y-v ly—»'l
and the integral becomes

Sy (yr—ynba—yﬂ]
:2 IJ _ 7
1y=2a]| y—] y—»F

hi=e3re;= (|y—y )

=2 _d (yj—y}).
dy: ly—y'l



