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Vorticity and Viscous Dissipation in an Incompressible Flow

Yang-Moon Koh*
(Received April 27, 1993)

The relation between the vorticity and viscous dissipation in an incompressible flow has been
investigated. It is shown that the square of relative vorticity with respect to the coordinate system
fixed to the container or to the flow at infinity gives the global rate of viscous dissipation, that
is, the viscous dissipation is proportional to the volume integral of the square of relative
vorticity. Thus, the total rate of viscous dissipation in the flow produced by the motion of a rigid
body is proportional to the integral of the square of vorticity taken over the whole space
including the region occupied by the volume of the rigid body in which the vorticity is assumed
to be the twice of the angular velocity of the body.
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where the volume integral is taken over the region
V occupied by the fluid and the normal n is
drawn inwards from the boundary 5 . If v=O at
the boundary, as in the case of a liquid filling a
fixed closed vessel, this becomes

(here, f.l and v, are the viscosity and i-component
of velocity v, respectively) is quite similar to that
of the square of vorticity,

f.lui=-lf.l( OVi _ OVj ') ( oV'. __ OVj). (2)
2 OX; OXi, OXj OXi

All these suggest that there might be some close
relations between the vorticity and viscous dissi
pation.

It seems not only the present author who has
thought that the viscous dissipation and vorticity
might be related to each other closely. Lamb
(1945, p. 581), as an example, has shown that, for
an incompressible flow,

1. Introduction

It is one of basic assumptions of fluid me
chanics that the viscous stress is independent of
the vorticity, but depends only on the rate of
deformation tensor. It is also true that the viscous
dissipation of mechanical energy, which is the
work done in deforming the element of fluid
made by the deviatric part of the stress in associa
tion with the shearing part of the rate of strain
(Batchelor, 1967, p. 153), and the square of vor
ticity, which is associated with the rotation of the
fluid dement, are mathematically independent
(McCormack and Crane, 1973, §4.2). But the net
viscous force on unit volume of an incompressible
fluid is proportional to a spatial derivative of the
vorticity (Batchelor, 1967, p. 148). Turbulent flow
is also due to vorticity intensification through
vortex :;tretching and the dissipation of turbulent
kinetic energy is approximately equal to the
mean-square vorticity fluctuation (Tennekes and
Lumley, 1972, §3.3). In addition, the form of the
viscous dissipation function of an incompressible
flow,

(3)

(4)
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Thus, we can suppose energy to be dissipated at
the rate twi per unit volume (Milne-Thomson,
1968, p. 639). However, generalization of the
argument to cases of non-vanishing velocity at the
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Fig. 1 The control surface used to integrate the
kinetic energy equation

bounded incompressible viscous fluid which is at
rest at infinity is in motion with linear velocity U
(t) and angular velocity .Q (t )(Fig. 1). The rate

of change of total kinetic energy of the fluid

surrounding the body is then obtained by inte
grating Eq. (5) over the control volume V
between surfaces 51 and 52 where the surface 51 is
taken to be coincident with the body surface

instantly, and then letting 52 recede, viz.

(7)v=U+QXr,

drJ!1L r
dtlv 2 dV= lSIPv'nld51

-fJ. r (vX{t))'nld51
lSI

- fJ.1W2dV. (6)

Here, the unit normal nl is into the control
volume (outward from the body).

On 5 h the fluid velocity is equal to that of the
body surface, viz.

and, thus,

By dot-producting the momentum equation,

p( ~~ - v x (t))= -'V(P+ pf)- fJ.'Vx (t),

with veloctiy v and making use of the vector

identity,

'V'(vx (t))=('Vx v)·{t)- v'('Vx (t),

we have the kinetic energy equation,

2. Changes in the Kinetic Energy of an
Incompressible Fluid in Motion

boundary seems to have been frustrated by two
obvious counterexamples, a rigid-body rotation
of a fluid in a vessel and a free-vortex flow

around a rotating circular cylinder. Besides, deri
vation of Eqs. (3) and (4) does not look to be

based on physical arguments, but seems purely

mathematical.

The purpose of the present study is, thus, to
investigate the relation between these two flow

properties. We will show that Eq. (4) holds true
for any incompressible flow provided that (i) the

relative vorticity with respect to the frame of

reference fixed to the vessel or to the flow at

infinity is used rather than the absolute vorticity
and (ii) the region of integration is extended so

that it includes the inside of the rigid body where
the vorticity is assumed to be equal to the twice of

body's angular velocity. Another purpose of the

paper is to give the firm physical explanation
about why the relation (4) should hold true, that

is, why two different physical quantities, r/J and

fJ.ol, are so closely related. Briefly speaking, the
vorticity induces the flow and the viscous dis
s·ipation in this induced flow is proportional to

the square of vorticity.

or

where p, p, and fJ. represent the pressure, density,
and viscosity of the fluid, respectively, and

{t)='Vx v·

Suppose, now, that a rigid body in an un-

rpV'nld51= U' r pnld51
)SI lSI

+Q. r rxpnld5 hlSI

where r is a position vector to a point on 51 from
the axis of rotation. Also we have

r (vX{t))'nld51lSI
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= u. r (w-2,Q) X nldSl)SI

+,Q. r rX {(w-2,Q) X nl}dSI,)51

+2 r (vx,Q)'nldSI')51

But, noting that Eq. (7) also gives velocities of
materlial points of the rigid body and thus apply
ing the divergence theorem to the volume of the
body, we have

r (vx,Q)'nldSl)51

= r V"(v X ,Q)dVO=2Q2 110,)vo

where 110 is the volume of the rigid body. Thus we
have

--.!L r l!.!i!.-dV = - ( U· F + ,Q. T)dt)v 2

-/1C(aidV+4Q2Vo). (8)

where

F=Fp+Ff ,

T=Tp + Tf ,

F p = - r pnldS!>)SI

Ff =/1 r (w- 2Q)xnldSI)51

= r fsldS!>)51

Tp =- r rXpnldSl')51

Tf = /1 r r X ((w-2,Q) X nl}dSl)51

= r r X fsldSI,)51

and l is a unit vector tangential to the surface of
the body.

As ~,,- 2Q is the vorticity relative to the
moving frame of reference fixed to the body, /1(w
- 2,Q) >, n = fsl is equal to the sh~ar stress at the
surface. Ff and Tf are, thus, the resultant force
and moment of shear stress acting on the surface
of the body, respectively, and - (U· F +,Q. T) is
the work done by the body to the surrounding
incompressible fulid. Thus, the last term of Eq.
(8) should be equal to the dissipation of kinetic
energy, viz.

Eq. (9) can also be got as follows. For an
incompressible flow, we have from Eqs. (I) and
(2)

f/J 2+2 aUi aUj (10)= /1W /1 aXj aX:
and also

au; aUj = V" (v. V' v)aXj aXi
u'=V"( - vX W+V'-2)'

Thus, integrating Eq. (10) over the region V, we
have Eq. (3) and

hf/JdV=/1h W2dV

-2/1 r (v'V'v)'n1dSI')51

But (Appendix I)

r (v'V'v)'nldSI= __ 2Q2 v'O)51

and Eq. (9) follows immediately. Similarly, for
the fluid in a rigid vessel, we have

ho f/JdV = /1(L w2dV -4Q2 110), (II)

where 110 and Q are, now, the volume and angu
lar velocity of the vessel, respectively.

In particular, if ,Q =0, both Eqs. (9) and (II)
are reduced to Eq. (4), that is, the volume integral
of the square of vorticity /1fd dV gets just equal
to the total rate of viscous dissipation in the
whole flow field. Note also that Eq. (9) is reduced
to Eq. (4), if volume integrals are taken over the
whole space assuming that the rigid body is
replaced by the mass of fluid moving in the same
way, viz. assuming that the vorticity is equal to
the twice of body's angular velocity in the region
occupied by the solid body. Eq. (II) becomes Eq.
(4), too, if the relative vorticity Wrel= W - 2Q
with respect to the coordinate system fixed to the
vessel is used instead of the absolute vorticity w.
To sum up, the rate of dissipation of kinetic
energy of the fluid filling a container which may
be infinitely large and have one or several rigid
bodies moving in it is given (Eq. (6) holds exact
ly, when the outer control surface S2 is the wall of
the fixed container and thus v =0 there) by

(9) rf/JdV=/1 r u/dVJv )v'
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where V; is the volume of the i-th body, and V'
and V denote, respectively, the inside of the
container (the whole region occupied by rigid

bodies and fluides) and the region occupied by
fluids only. wand SJ i , here, are also the relative
vorticity and relative angular velocity with respect

to the moving frame of reference fixed to the
container.

3. Viscous Dissipation in a Flow Field
Induced by Vortices

The previous result that the integral of the
square of vorticity is proportional to the rate of

viscous dissipation seems, at first sight, to be
against the obvious fact that the viscous stress is
generated solely by deformation of the fluid and

independent of the loacl vorticity. This apparent
paradox can be explained by realizing that the

vorticity induces the flow and, hence, deforma
tion.

As an example, suppose a Rankine-vortex flow
such that

o
Fig. 2 Calculation of the velocity distribution as

sociated with a ring vortex

Though a bit complicated, it is straightforward
to extend the above argument to three

dimensional flows. Suppose a vortex-tube of
strength r and infinitesimal cross-section A(Fig.
2). It is assumed that the flow is irrotational at

infinity and, thus, the tube forms a closed loop C
which may pass through the solid body. Let y be
a position vector to a point Q of the vortex-tube

and w(y) be the vorticity which is assumed
uniform across the cross-section of the vortex

tube. Then, we have

1

rw for

vo( r)= ~
a W for
2r

r~a

r>a

w(y )dV(y) = w(y )Ady = rdy (13)

and the velocity v(x) at a point P(x) due to this

vortex-tube is (Batchelor, 1967, p. 87)

where V8, r, wand a are values of a circumferen
tial velocity, radial distance, and vorticity and
radius of the core of the vortex, respectively. The

dissipation function becomes

where integrals are taken over whole plane. We
can also show(Appendix 2) that the total dissipa
tion in a combined flow induced by two Rankine

vortices of radii ah a2 and vorticities Wh W2 is
equal to Jrf-l(arwf+ a~wD: the dissipation in the
combined flow due to several vortices is simply
the sum of dissipations in each flow field due to

every single vortex.

(14)

where the volume intergral is taken over the

vortex-tube and s is the magnitude of the vector s
=x- y. The strain tij becomes

where y' is another position vector to a point of

the vortex-tube and s'=lx- y'l.

(12)

r~a

r>a1
0 for

$= a4w2

f-l--4- for
r

and integration gives

!$dA=Jr/-ta2W2=f-l!w2dA,
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(17)

(16)

The total rate of viscous dissipation

W= !a>dV(x)

can now be obtained by integrating Eg. (15) over
the whole space. Assuming that the order of
integration can be interchanged and using the
relation (Appendix 3)

((Xi- Y;)(Xi- yj) dV(x)
)- 5 35'3

==27l' a~i Yi~/;,

where 5"=ly - y'l, we have

___~f f[ . (f yp-Y;'
W - S7l' Ie Ie €ilm€,pq ayJaYI 5"

" a
3

yp-y;'] ,+ l'ilm€ipq a a a ." dYmdYq,Yi Yi Yl 5

The last integral of Eg. (17) is zero and we have

W= __l-/sr
2 [f f a r

a
Yl~/; dYmdy;"

7l' Ie Ie Yi Yl 5

[ f (f Ym-Y;"d d ,] (IS)-1e Ie aylaYI 5" Ym Yl .

The last integral of Eg. (IS) is zero again and

-c, r
a

Yl~/; =aa
2

2 ..;,= -SmHy - y'),
aYi YI 5 Yi 5

where (l(Y - y') is a Dirac a-function. Thus,
using Eq. (13), we have

W = I-/rfc fc a(y - y')dYmdy;"

=1-/J(Wm(y)Wm(Y')O(y- y')dV(y)dV(y')

=f..l !(I)(y).(I)(y)dV(y), (19)

where volume integrals are taken over the vortex
tube. In other words, the viscous dissipation in
the flow induced by an infnitesimal vortex is
proportional to the volume integral of the square
of vorticity taken over the vortex.

The combined velocity due to two vortices el

and ell is the sum of velocities induced by each
vortex and so is the strain €ij of the combined
flow, that is,

where €I and Ell are strains due to e l and ell,

respectively. Thus we have

But the same reasoning to get Eg. (19) leads to
that the integral of the cross-product term is zero,
i.e.,

!€{i€il dV(x) =0,

and we have the same relation (19) for the com
bined flow, too, with the volume integral taken
over all the vortices. But it is irrotational outside
the vortices and we have Eq. (4) again, viz.

W= !a>dV(x)=f..l!w2dV(x),

where volume integrals are now taken over the
whole space.

4. Discussions and Concluding

Remarks

It seems not necessary to discuss viscous dissi
pations in a. rigid-body rotation of the fluid in a
vessel and a free-vortex flow around a rotating
circular cylinder any more. But one may raise It
question about viscous dissipations in potential
flows. Clearly, irrotationality does not imply the
absence of viscous stresses (Kundu, 1990, p. 124)
nor the absence of viscous dissipations. But, the
only potential flow known to the present author
that satisfies the no-slip condition at the solid
wall is the free-vortex flow around a rotating
circular cylinder which has already been discus
sed in depth. To satisfy the no-slip condition,
most potential flows are accompanied by shear
flows with non-vanishing vorticity such as in
boundary layers and wakes. The veloc:ity v of an
incompressible fluid which is consistent with
specified values of vorticity (I) at each point of the
fluid can be written (Batchelor, 1967, Sec. 2.4) as

v= vv+\1¢, (20)

where vv is given by Eg. (14) with the volume
integral taken over the region occupied by the
fluid. The velocity potential ¢ is to satisfy the
boundary condition. It should also be assumed
that the fluid, the vorticity distribution and,
hence, the region of integration extend beyond the
actual boundary to the inside of the body so that
all the vortex lines form closed loops in the
extended region, when the specified vorticity has
non-zero normal component at some points of the
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actual boundary of the fluid. But, imagining that

the body is replaced by the mass of fluid moving

like the rigid body(the no-slip condition assures

that the velocity varies continuosly across the

actual boundary of the fluid), we can see that Eq.

(14), the volume integral being taken over the

extended region which includes the volume of the

body, gives the velocity v and, hence, '\l ¢ in Eq.

(20) can be taken to be zero. In other words, the

vorticity distribution in the shear layer and inside

of the volume of the body determines the whole

velocity field including that of the external poten

tial flow, and the integral of the square of vor

ticity over the extended region gives the total rate

of viscous dissipation in the whole flow field

including that in the region of irrotational flow.

Neither the vorticity at a point nor the square

of it is associated with the local rate of viscous

dissipation at that point. As claimed frequently,

the viscous dissipation, which is associated with

the deformation of the element of fluid, and the

square of vorticty, which is associated with the

rigid-body rotation of the fluid element, are not

only two different physical quantities but also are

mathematically independent. But the relative vor

ticity, i.e., the relative rotation of an incompress

ible fluid with respect to the coordinate system

fixed to the container or to the flow at infinity

always induces deformation. In other words, if

there is a relatvie motion of an incompressible

fluid with respect to the container or to the flow

at infinity, then there always exists the relative

vorticity, (J)rel and the integral f.J.fwre/dV

taken over the extended region including the

volume of the rigid body is equal to the total

viscous dissipation. Briefly speaking, f.J.Wre/ gives
the global rate of viscous dissipation, while the

dissipation funtion ([J gives the local rate, and

their volume integrals over the extended region

should be the same.

Acknowledgement

The author is grateful to Prof. P. Bradshaw of

Standford University for reading the manuscript

and giving valuable comments.

References

Batchelor, G. K., 1967, An Introduction to
Fluid Dynamics, Cambridge University Press.

Dwight, H. 8., 1961, Tables of Integrals and
Other Mathematical Data, 4th ed., The Macmil

lan Company.

Kundu, P. K., 1990, Fluid Mechanics, Aca

demic Press.

Lamb, H., 1945, Hydrodynamics, 6th ed.,

Dover Publications.

McCormack, P. D. and Crane, L., 1973, Physi
cal Fluid Dynamics, Academic Press.

Milne-Thomson, L. M., 1968, Theoretical
Hydrodynamics, 5th ed., The MacMillan Com

pany.

Tennekes, H. and Lumley, J. L., 1972, A First
Course in Turbulence, The MIT Press.

Appendix A

Evaluation of the Integral

( (V· \JV)· nl dS l}SI

Let

V= Vrel+ U +.Q X r

where r is a position vector from the origin of the

moving coordinate system fixed to the body and

U and .Q are the linear and angular velocity of

the moving frame of reference, respectively. Then,

employing the no-slip condition

Vrel=O on 51

and the vector identity

a·'\l(.Q X r)=.Q X a,

where a is an arbitrary vector, we have

v· '\lv=( U +.Q X r)''\lVrel

+.Qx(U+.QXr)

on the surface 51'
But Vrel • n" the normal component of relative

velocity with respect to the surface 5" is a qua

dratic function of the distance from 51 and, thus,

[( U +.Q X r)''\lVrel]'nl=O

on 51' Also we have
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( (D X U)· n1dSlJSt
=(!JX U)· ( n1dS1=OJSI

interaction of two vortex-flows.
To integrate fblll • we can use the bipolar coor

dinate system(Fig. 3):

The scale factors are

ht=h~=-__l_- ~
cosh 7J - cos.;-

and fbIII becomes

and

( [Dx(!JXr)]·n1dSlJSt
= ( V'·[DX(!JXr)]dVoJvo
= -2.Q211o,

where Vo is the volume of the body. Thus, we

have

x

7J =In--!i,
r2

Isinh 7J l~~

COSh7J -cos~' y- COSh7J -cos~'

Appendix B
Viscous Dissipation in a Flow Field
Induced by Two Rankine Vortices

The velocity v at a point P(x. y) (Fig. 3)

induced! by two line vortices of strengths I l , Tz at

points (± I, 0) is

_ It -yi+(x-l)j + r2 -yi+(x+l)j
V-27i: (x-l)2+y2 2][ (X+l)2+ y2

where if and j are unit vectors in the x- and
y-direction, respectively. The dissipation function

becomes

~_n I +rl I
J.!. - ][2 [(x _1)2+y2]2 ][2 [(x +1)2+i]2

+ 2Iln 4(x -l)(x+IV+[(x-1)2-i][(x +lj2-l]
][2 [(x _1)2+l)2[(x +1)2+y2]2

The first two terms on the right-hand side are
dissipation functions for each line-vortex flow
and the last one, denoted by fb lll , is due to the

fblll = f;~24 (cosh7J-cos~)2cos2~.

Thus, we have

IIfbllldxdy= f;~2 IlcoS2~d~d7J=0,

where the integrals are taken over the whole plane
excluding the cores of vortices, that is, the region
outside of two circles of constant rl/ r2 centred at
(± 1,0). Thus, the total dissipation in a combined
flow due to two Rankine vortices is simply the
sum of dissipations in each Rankine-vortex flow.

Appendix C
Derivation of Eq. (16)

By putting

, + '
a - L - Y t-x-~- 2 ,- 2'

we have

s=x-y=t-a, s'=x-y'='t+a,

and the left-hand side of Eq. (16), denoted by Iij,
becomes

Fig. 3 Calculation of the velocity field induced by
two line vortices

( -1,0)

y

o (1,0)

P(x,y)

x

Let ei be a unit vector in the i-direction of the
coordinate system and e;'s be another set of base
vectors such that e3 is in the direction of a. Then,
putting

t = r(cos Be; +sinBez) + ze3'

where B is the azimuthal angle about the e3-axis
measured from the e;-axis and r is the distance
from the e3-axis, and integrating with respect to B
first, we have
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and

_100 (00 2(Z2 - a2)t3;/3j+r 2Vlo - 13;/3;)
10 - 7r -ooJo [r2+(z - a)2J312[ r2+(z +a)2J312 rdrdz

where 10= e~" ej' By substituting the variable of
integration r by r 2 and using the tabulated
formulae(Dwight, 1961, p. 214)

Y,-Y;
Iy-y'l

But

13i = es" ei= ~y- y:? "eiy-y
and the integral becomes

I -2 [00 (Yi-Y;)(Yj-yj)]
0- 7r Iy-y'l ly-y'13
=27r~ (yj- yj) .

aYi ly- y'l
alC+bf(i'

blC+cf(i

we have


